Golang线程模型相关源码(golang 1.10)

源码位置在src/runtime/runtime2.go

全局变量

var (
    allglen    uintptr
    allm       *m // 注释2. 全局m列表
    allp       []*p  // len(allp) == gomaxprocs; may change at safe points, otherwise immutable
    allpLock   mutex // Protects P-less reads of allp and all writes
    gomaxprocs int32
    ncpu       int32
    forcegc    forcegcstate
    sched      schedt
    newprocs   int32

    // Information about what cpu features are available.
    // Set on startup in asm_{386,amd64,amd64p32}.s.
    // Packages outside the runtime should not use these
    // as they are not an external api.
    processorVersionInfo uint32
    isIntel              bool
    lfenceBeforeRdtsc    bool
    support_aes          bool
    support_avx          bool
    support_avx2         bool
    support_bmi1         bool
    support_bmi2         bool
    support_erms         bool
    support_osxsave      bool
    support_popcnt       bool
    support_sse2         bool
    support_sse41        bool
    support_sse42        bool
    support_ssse3        bool

    goarm                uint8 // set by cmd/link on arm systems
    framepointer_enabled bool  // set by cmd/link
)

M : Machine

type m struct {
    g0      *g     // goroutine with scheduling stack
    morebuf gobuf  // gobuf arg to morestack
    divmod  uint32 // div/mod denominator for arm - known to liblink

    // Fields not known to debuggers.
    procid        uint64       // for debuggers, but offset not hard-coded
    gsignal       *g           // signal-handling g
    goSigStack    gsignalStack // Go-allocated signal handling stack
    sigmask       sigset       // storage for saved signal mask
    tls           [6]uintptr   // thread-local storage (for x86 extern register)
    mstartfn      func()
    curg          *g       // current running goroutine
    caughtsig     guintptr // goroutine running during fatal signal
    p             puintptr // attached p for executing go code (nil if not executing go code)
    nextp         puintptr
    id            int64
    mallocing     int32
    throwing      int32
    preemptoff    string // if != "", keep curg running on this m
    locks         int32
    softfloat     int32
    dying         int32
    profilehz     int32
    helpgc        int32
    spinning      bool // m is out of work and is actively looking for work
    blocked       bool // m is blocked on a note
    inwb          bool // m is executing a write barrier
    newSigstack   bool // minit on C thread called sigaltstack
    printlock     int8
    incgo         bool   // m is executing a cgo call
    freeWait      uint32 // if == 0, safe to free g0 and delete m (atomic)
    fastrand      [2]uint32
    needextram    bool
    traceback     uint8
    ncgocall      uint64      // number of cgo calls in total
    ncgo          int32       // number of cgo calls currently in progress
    cgoCallersUse uint32      // if non-zero, cgoCallers in use temporarily
    cgoCallers    *cgoCallers // cgo traceback if crashing in cgo call
    park          note
    alllink       *m // on allm
    schedlink     muintptr
    mcache        *mcache
    lockedg       guintptr
    createstack   [32]uintptr    // stack that created this thread.
    freglo        [16]uint32     // d[i] lsb and f[i]
    freghi        [16]uint32     // d[i] msb and f[i+16]
    fflag         uint32         // floating point compare flags
    lockedExt     uint32         // tracking for external LockOSThread
    lockedInt     uint32         // tracking for internal lockOSThread
    nextwaitm     muintptr       // next m waiting for lock
    waitunlockf   unsafe.Pointer // todo go func(*g, unsafe.pointer) bool
    waitlock      unsafe.Pointer
    waittraceev   byte
    waittraceskip int
    startingtrace bool
    syscalltick   uint32
    thread        uintptr // thread handle
    freelink      *m      // on sched.freem

    // these are here because they are too large to be on the stack
    // of low-level NOSPLIT functions.
    libcall   libcall
    libcallpc uintptr // for cpu profiler
    libcallsp uintptr
    libcallg  guintptr
    syscall   libcall // stores syscall parameters on windows

    mOS
}

P:Processor

type p struct {
    lock mutex

    id          int32
    status      uint32 // one of pidle/prunning/...
    link        puintptr
    schedtick   uint32     // incremented on every scheduler call
    syscalltick uint32     // incremented on every system call
    sysmontick  sysmontick // last tick observed by sysmon
    m           muintptr   // back-link to associated m (nil if idle)
    mcache      *mcache
    racectx     uintptr

    deferpool    [5][]*_defer // pool of available defer structs of different sizes (see panic.go)
    deferpoolbuf [5][32]*_defer

    // Cache of goroutine ids, amortizes accesses to runtime·sched.goidgen.
    goidcache    uint64
    goidcacheend uint64

    // Queue of runnable goroutines. Accessed without lock.
    runqhead uint32
    runqtail uint32
    runq     [256]guintptr // 注释1. 每一个p都会包含一个可运行gorountine队列。

    // runnext, if non-nil, is a runnable G that was ready'd by
    // the current G and should be run next instead of what's in
    // runq if there's time remaining in the running G's time
    // slice. It will inherit the time left in the current time
    // slice. If a set of goroutines is locked in a
    // communicate-and-wait pattern, this schedules that set as a
    // unit and eliminates the (potentially large) scheduling
    // latency that otherwise arises from adding the ready'd
    // goroutines to the end of the run queue.
    runnext guintptr

    // Available G's (status == Gdead)
    gfree    *g
    gfreecnt int32

    sudogcache []*sudog
    sudogbuf   [128]*sudog

    tracebuf traceBufPtr

    // traceSweep indicates the sweep events should be traced.
    // This is used to defer the sweep start event until a span
    // has actually been swept.
    traceSweep bool
    // traceSwept and traceReclaimed track the number of bytes
    // swept and reclaimed by sweeping in the current sweep loop.
    traceSwept, traceReclaimed uintptr

    palloc persistentAlloc // per-P to avoid mutex

    // Per-P GC state
    gcAssistTime         int64 // Nanoseconds in assistAlloc
    gcFractionalMarkTime int64 // Nanoseconds in fractional mark worker
    gcBgMarkWorker       guintptr
    gcMarkWorkerMode     gcMarkWorkerMode

    // gcMarkWorkerStartTime is the nanotime() at which this mark
    // worker started.
    gcMarkWorkerStartTime int64

    // gcw is this P's GC work buffer cache. The work buffer is
    // filled by write barriers, drained by mutator assists, and
    // disposed on certain GC state transitions.
    gcw gcWork

    // wbBuf is this P's GC write barrier buffer.
    //
    // TODO: Consider caching this in the running G.
    wbBuf wbBuf

    runSafePointFn uint32 // if 1, run sched.safePointFn at next safe point

    pad [sys.CacheLineSize]byte
}

G:Goroutine

type g struct {
    // Stack parameters.
    // stack describes the actual stack memory: [stack.lo, stack.hi).
    // stackguard0 is the stack pointer compared in the Go stack growth prologue.
    // It is stack.lo+StackGuard normally, but can be StackPreempt to trigger a preemption.
    // stackguard1 is the stack pointer compared in the C stack growth prologue.
    // It is stack.lo+StackGuard on g0 and gsignal stacks.
    // It is ~0 on other goroutine stacks, to trigger a call to morestackc (and crash).
    stack       stack   // offset known to runtime/cgo
    stackguard0 uintptr // offset known to liblink
    stackguard1 uintptr // offset known to liblink

    _panic         *_panic // innermost panic - offset known to liblink
    _defer         *_defer // innermost defer
    m              *m      // current m; offset known to arm liblink
    sched          gobuf
    syscallsp      uintptr        // if status==Gsyscall, syscallsp = sched.sp to use during gc
    syscallpc      uintptr        // if status==Gsyscall, syscallpc = sched.pc to use during gc
    stktopsp       uintptr        // expected sp at top of stack, to check in traceback
    param          unsafe.Pointer // passed parameter on wakeup
    atomicstatus   uint32
    stackLock      uint32 // sigprof/scang lock; TODO: fold in to atomicstatus
    goid           int64
    waitsince      int64  // approx time when the g become blocked
    waitreason     string // if status==Gwaiting
    schedlink      guintptr
    preempt        bool     // preemption signal, duplicates stackguard0 = stackpreempt
    paniconfault   bool     // panic (instead of crash) on unexpected fault address
    preemptscan    bool     // preempted g does scan for gc
    gcscandone     bool     // g has scanned stack; protected by _Gscan bit in status
    gcscanvalid    bool     // false at start of gc cycle, true if G has not run since last scan; TODO: remove?
    throwsplit     bool     // must not split stack
    raceignore     int8     // ignore race detection events
    sysblocktraced bool     // StartTrace has emitted EvGoInSyscall about this goroutine
    sysexitticks   int64    // cputicks when syscall has returned (for tracing)
    traceseq       uint64   // trace event sequencer
    tracelastp     puintptr // last P emitted an event for this goroutine
    lockedm        muintptr
    sig            uint32
    writebuf       []byte
    sigcode0       uintptr
    sigcode1       uintptr
    sigpc          uintptr
    gopc           uintptr // pc of go statement that created this goroutine
    startpc        uintptr // pc of goroutine function
    racectx        uintptr
    waiting        *sudog         // sudog structures this g is waiting on (that have a valid elem ptr); in lock order
    cgoCtxt        []uintptr      // cgo traceback context
    labels         unsafe.Pointer // profiler labels
    timer          *timer         // cached timer for time.Sleep
    selectDone     uint32         // are we participating in a select and did someone win the race?

    // Per-G GC state

    // gcAssistBytes is this G's GC assist credit in terms of
    // bytes allocated. If this is positive, then the G has credit
    // to allocate gcAssistBytes bytes without assisting. If this
    // is negative, then the G must correct this by performing
    // scan work. We track this in bytes to make it fast to update
    // and check for debt in the malloc hot path. The assist ratio
    // determines how this corresponds to scan work debt.
    gcAssistBytes int64
}
powered by Gitbook该文件修订时间: 2019-07-05 09:33:43

results matching ""

    No results matching ""